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ON THE SUPPLY OF SPARES TO INSURE ADEQUATE TESTING 

Sam C.  Saunders 

0.    Introduction. 

In this note we consider the problem of providing the minimum number of 

spares for one equipment which is to be tested for a given number of hours such 

that we will suffer a sufficient number of breakdowns or replacements to exhaust 

our stock of spares with probability not greater than a specified level.    Note 

that unless a guarantee period (i.e. an initial period of life in which breakdown 

cannot occur) is known it Is not ever possible to provide enough spares to insure 

i. e.  with probability zero that breakdowns and replacements will not exhaust the 

stock. 

Example (i) . A component is to undergo 450 hours of testing.    The mean time 

to failure of the component is 100 hours and the part will be replaced after 

150 hours of service.    How many spares should be provided at the test 

location so that with probability .95 we can   complete the specified number 

of test hours without exhausting the stock? 

Example (ii).    We have 14 such tests being run simultaneously.    How many 

spares should be provided at one central supply location to service all 

tests so that with probability .95 we can complete the total (14)(450) = 6300 

hours of testing without exhausting our stock? 

1.)   One Equipment 

We shall now desribe in general terms the problem set out in the 

example situation (i). 
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Let   X  with or without affixes describe the life length of some component. 

It is a random variable on the positive real line with distribution,   say   F,  i.e. 

F(x)   is the probability that the component in use will fail on or before time   x. 

(1. 1) F(x) = P[X< x] x > 0   . 

If the component of life length   X   is to be replaced (removed from service) 

at time   t   we denote by   X    the truncated life length with distribution   G     (or 

merely   G   when no confusion is possible) and we write 

(1.2) Gt(x) -Pp^<x3 =   . 
"(x) if   x <t r i 

1 if  x > t 
\. 

Consider a sequence of such truncated life lengths   X ,..., X., ...    of 

spares of one equipment.   "We assume that the   X.   are independent and identically 

t        t t 
distributed by   G,.    Let   S    =X1 + ...+X   .    This random variable is the length t n        1 n 

of time until the n th replacement has occurred whether by in-service breakdown 

or by scheduled replacement after service of length   t.    The distribution of   S     is 
n 

the     n  - fold convolution    of the distribution of the   X.,    i.e. 
i' 

♦ x * 
(1.3) G"(x) ^PLS^x] =   /G(

t
n~l)(x-y)dGt(y)   , n = 2, 3 , . .. 

♦ , x 

j 
0 

the integral being taken in the Lebesque-Stieltjes sense,  and 

(1.4) G*   =   Gt   . 

Let   N (x)   be the total number of replacements up to time   x.    Now   N (x) 

is a non-negative integer valued random variable for each fixed   t   and   x,  and it 

has a distribution,   say   H        ,   (or   H   when no confusion is possible).    Now t. x 
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(1.5) H      (n) = PpST^x) < n] n = 0, 1, . ..    . 

One sees that 

(1.6) PCNV) = n] = PCS* < x,   s;+1 > x] = PES^ < x] - P[S*+1 < x] 

hence 

(1.7) PCN^x) >n] =Gt
(n+l)   (x)   . 

We wish to determine the minimum number of spares   k   such that for a 

specified period of time   h   and a specified probability   a > 0   we have 

(1.8) Pp^O») > k] < a   , 

where   t   is the time of the in-service replacement. 

2.)   The solution and an approximation for one equipment. 

Let |    0 X<0 

and 

(2.2) F0
0(x)    = 

0 <x < t 

X  > t 

x < 0 

x > 0 • 

We will show that 

iJ rr./*^^n-J ■> (n-j) (2. 3) Gn  W   «   2     ( ")[! - F(t)]J [F(t)]n'j Fn
(n"j) (x - jt) 

thus the calculation of   k   requires both the knowledge of   F(t)   and of   F- . 

If   G   is any distribution on the positive real axis,let G   be defined by 

oo 

(2.4) G(s) =   /   e'SXdG(x)    . 
0 
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Hence 

Gt(s)   =   F(t) F0(s) + [1 -F(t)]e~St =    G"(S)   =   [Gt(s)]n 

= 2     (j
n)[l--F(t)]j[F(t)]n-j/n-j)*(s)e-J! t    )H - Ht/.r[FU,ij     -   i-    (s) e   ]St 

i*o 

from which the result is clear. 

Now (2. 3) gives an exact formula needed for the solution of (1. 8) using 

(1.7).   This is about all that can be said in general.    However the central limit 

theorem can be used in certain cases .    Let 

00 2 ^ 2 
(2.5) u   =   /xdG (x)   , o-    =    /(x - a )   dG (x) 

1      0 0 it 

then we know that 

(2.6) lim   G      (N/TI o-x + na) = S>(x) 
t t t n->-oo 

u      , 2 
/< x • 

r=r-   e - -r- dx is the normal zero-one distribution.    Thus 

(2.7) G"   (h)   ^ 9{    »'■   t  ) 
t Vno l(rt 

Hence if one knows   a     and   cr    one can find the least   n   such that 

(2.8) h - na   < N/n|   a 
t at 

where   f.   3 $(4 ) = a   and this is the solution of a quadratic equation.    If the 

solution of   (2.8) is   n     then   k = n     —1, 
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3.   An Example of type (i). 

Let us assume the failure rate of the component is constant in the interval 

of service (0,t).    Hence 

1 - e 
Gt(x)    = 

x <t 

X > t 

where  X.    is the failure rate.   Then we calculate from (2. 5) 

-X t _2 
(3.1) 

(3.2) 

1 - e 
2  3 

= t_M: + 2L^_ + 1        2     +      3!     +... 

(r=(l-2\te -e )/\ 

= 3\t3 - I \2t4 + .:. 

a)   Now take   a   =  100,   t  = 150 ,    h =  450   then   \t = 2/3   and we find to 

a linear approximation 

2 
X.   = 

450 
cr = 52.2   . 

If we set   a = . 05   we find from tables of the normal distribution that   ^    = -  1. 645 a 

and from (2. 8) we wish the least   n such that 

• 450-100n<   \/n"(85.8) 

and we find   n = 7   satisfies the inequality while    n = 6   fails.    Thus   k = 6   is 

the number of spares needed. 

b)   Now take  \   = . 01 ,    t = 150,    h = 450   then from (3.1),   (3.2) we find 

[j.   = 77.7,      cr    = 53.9  and setting   a = . 05 we find   k = 9. 

Note that these answers are obtained by using the normal approximation 

and the assumption of constant failure rate during use,  not knowing whether or 

not this is true. 
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4.)    Several tests of the same equipment. 

Suppose now that at one location there are several similar,  say   m, 

equipments each to be tested a length of time   h.    Let   N.(x)   be the number of 

replacements of the j th equipment at time   x (here we delete the superscript 

t).    Thus at time   x   the total number of replacements used will be 

(4.0.1) T    (x) =N1(x) + ... + N   (x> ml m 

The problem again is to find the minimum number k   of spares needed at this one 

location such that if each equipment undergoes a test of length   h   with scheduled 

replacement at time   t   of the components. 

We have  k    being the least integer   n   such that 

P[T   (h) > k] < ß 
m 

where   ß   is a probability specified in advance. 

Again we define 

(4.1) P[Tm(h) <n] =H™h (n) n = 0,1,. .. 

where   H.   .    was defined in (1.5).   Now in the convolution formula we have t, h 

n 
(4.2) im     l„\ V      rT(m~l)/ Ht>)   =EoH^>-i)[Ht>xO).Ht>x0.1)] 

(4.3) -     I    H^'in - iKG^Ix),   - G^C)] 

which is a recursion formula which can be used for machine computation. 

In an actual problem   m, t, x   are given and one finds the least   n   via 

computation from (4. 2) such that   H       (n) < ß. 
L. X 
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U (x) =   EN^x) = X nPCN^x) = n] 
n=0 
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Let us write the expected number of failures at time   x   as 

(4. 3.1) 

omitting the arguments of the function 

OO * * 00 • 

U ■   I   n[Gn    - Gn+1  ] =   £  Gn      . 
n=0 • n=l 

Thus   U   satisfies the integral equation 

(4. 3, 2) 

Let      Vt(x) = £ [lAx)]2 =   J   n  P[Nt(x) = n]    then 

U = G + U * G   . 
00 

n=0 

v = z  YJ  nGn   " u 

n=l 

and   V   satisfies the integral equation 

-7- 

(4. 3. 3) V = U + V * G 

Hence we have from (4. 3. 2) and (4. 3. 3) 

A A u « G 
U = 

1 - G 
V = 

G 
1 " G        (1 - G)2 

Now 

Gt(s) = 1 - ^s + (cr2 + p*) -f-   + 0(s3)    . 

Thus we have from known relationships concerning the corresponding behavior 

of the Laplace transform near zero and the generating function near infinity 

Ut(x) i ,.     V (x) - U2(x) o-2 

lim       t = _   , lim _i :    a      * 
Ll x — oo „ X -*oo x n 
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2 2 
Let    d  (x) = V (x) - U  (x)   and for  x   large  we have 

(4.4) Ut(x) ~    - dt(x) ~ -*- x   . 

#253 

Let   Un   be any guess as to what   U   is.    Now define 

(4.4.1) U = G + U    * G n+1 n 

then it follows that   U — U. 
n 

Let   Vn   be any guess as to what   V   is.    Now define 

(4. 4. 2) V ,     = G + V    * [2G - G    ] n+1 n     L J 

then it follows that   V   - V. 
n 

These iteration procedures can be used to find  V(h) and   d(h)   instead of 

the crude approximations (4.4).    Unfortunately these procedures require 

machine programming. 

Now,  of course, if one central location is to provide spares for all locations 

and there are   m.   equipments being listed at the i th location   i = 1, . .., r   then 

at time   x   the total number of replacements used will be 

W(x) = T      (x) + ...  + T     (x)   . 
•       mn m 1 r 

This random variable has the distribution 

H. 
t,n where 2   m.   . 

1=1 

which is exactly the same distribution as given in (4.1),   (4. 2) except that the 

degreee of convolution is higher. 
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Notice from (4.0.1) we may regard 

W(x) = N   (x) + .. .  + N  (x) 
1 v 

with all the summands independent and identically distributed. 

We wish to find least   k   such that 

P[W(x) >k] < Y 

for   Y > 0   previously given.    This is equivalent with finding the least   k   such 

that , 

H^     (k - 1) > 1 - Y   . 
i, n 

Thus if   v   is sufficiently large we may use the same reasoning § 2 to set, 

n+. 5 - vU (h) 
(4.5) H,     (n) ~   $ [- t,n       =        L 

Vv   d (h) 
-^-i 

and we proceed as before except that the variable is changed and increased by 

. 5 for the discrete approximation. 

If we are content to use the approximation (4.4),  we seek the least integer 

k   such that 

(4.6) k > v  — + "s/v ?e,   +4 
-t        •'t   ;it 1-v   2 

as the approximate solution to the problem.    We should realize that (4.6) will 

probably not be as nearly good as that in (2. 8) because we have used the approxi- 

mation of (4. 4) as well as the approximation of the convolution of a discrete 

random variable by the normal.    However (4.6) prescribes quick and easy 

approximations which could be used as a first guess in beginning the iteration 

in equation (4. 2). 
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5.)  An example of type (ii) 

Let us make for comparisons sake the same assumption of constant failure 

rate that was made in § 3 and further make the assumption that the parameter values 

are the same.    Take   v = 14, a   = 100,    h = 450,   o-   = 52.2 then from (4.4) we 

calculate 

Ut(h) =4.5 dt(h) s 1.11   . 

By setting   v = .95 then   £ = 1.645 and from equation (4.6) we have 
1-Y 

n>  35.2 

hence   k - 36. 

Using these approximations we find one can supply 14 test locations jointly 

with the same stock of spares that could be used to supply   4   individually.    This 

amazing result probably indicates nothing more than the crudeness of the approxi- 

mation (4. 4),    We should of course expect to use less jointly than the mere 

product of the numba: of locations times the number of spares at each site however 

the result seems a little too good.    Its validity must be checked by use of the 

exact formulae (4. 3) provided the exact information is available. 

6.)   Comments 

To solve the problem exactly via formulae (2. 3) or (4. 3) we need to know 

the distribution   F   on the interval (0, t)   moreover the use of these formulae would 

in general require machine programming for their solution.    To make the normal 

approximation of (2.7) we need to know considerably less only   \J.     and   a- 

If   F   is known on (0,t) one can use iteration procedures to find   U   and 

V   as given in (4.4. I) and (4. 4.2) and then use the normal approximation. 
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There is another situation which one may obtain and that is a set of 

observations of the random variable   X      from which we must make statistical 
n 

inference about the number of spares required.    That is one can only estimate the 

distribution   F   in   (0,T).    This is another topic in which very little is known. 

All of the relevant material on probability that is used in the preceding 

discussion can be found in the following texts: 

An Introduction to Stochastic Processes,    M. S.   Bartlett,   Cambridge University 

Press,   1955,   pp. 20-24. 

Stochastic Processes, Lajos Takacs,  John Wiley & Sons,   I960,  Chapter 3. 


